Fitness Costs of Synonymous Mutations in the rpsT Gene Can Be Compensated by Restoring mRNA Base Pairing
نویسندگان
چکیده
We previously reported that the distribution of fitness effects for non-synonymous and synonymous mutations in Salmonella typhimurium ribosomal proteins S20 and L1 are similar, suggesting that fitness constraints are present at the level of mRNA. Here we explore the hypothesis that synonymous mutations confer their fitness-reducing effect by alterating the secondary structure of the mRNA. To this end, we constructed a set of synonymous substitutions in the rpsT gene, encoding ribosomal protein S20, that are located in predicted paired regions in the mRNA and measured their effect on bacterial fitness. Our results show that for 3/9 cases tested, the reduced fitness conferred by a synonymous mutation could be fully or partly restored by introducing a second synonymous substitution that restore base pairing in a mRNA stem. In addition, random mutations in predicted paired regions had larger fitness effects than those in unpaired regions. Finally, we did not observe any correlation between fitness effects of the synonymous mutations and their rarity. These results suggest that for ribosomal protein S20, the deleterious effects of synonymous mutations are not generally due to codon usage effects, but that mRNA secondary structure is a major fitness constraint.
منابع مشابه
Compensating the Fitness Costs of Synonymous Mutations
Synonymous mutations do not change the sequence of the polypeptide but they may still influence fitness. We investigated in Salmonella enterica how four synonymous mutations in the rpsT gene (encoding ribosomal protein S20) reduce fitness (i.e., growth rate) and the mechanisms by which this cost can be genetically compensated. The reduced growth rates of the synonymous mutants were correlated w...
متن کاملExperimental Evolution and Fitness Effects of Mutations
Knöppel, A. 2016. Experimental Evolution. and Fitness Effects of Mutations. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1276. 72 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9749-1. Bacteria have small, streamlined genomes and evolve rapidly. Their large population sizes allow selection to be the main driver of evolution. With advances i...
متن کاملCompensatory Evolution of Intrinsic Transcription Terminators in Bacillus Cereus
Many RNA molecules possess complicated secondary structure critical to their function. Mutations in double-helical regions of RNA may disrupt Watson-Crick (WC) interactions causing structure destabilization or even complete loss of function. Such disruption can be compensated by another mutation restoring base pairing, as has been shown for mRNA, rRNA and tRNA. Here, we investigate the evolutio...
متن کاملAssociation of Pathogenic Missense and Nonsense Mutations in Mitochondrial COII Gene with Familial Adenomatous Polyposis (FAP)
Nuclear genetic mutations have been extensively investigated in solid tumors. However, the role of the mitochondrial genome remains uncertain. Since the metabolism of solid tumors is associated with aerobic glycolysis and high lactate production, tumors may have mitochondrial dysfunctions. Familial adenomatous polyposis (FAP) is a rare form of colorectal cancer and an autosomal dominant inheri...
متن کاملCodonShuffle: a tool for generating and analyzing synonymously mutated sequences
Because synonymous mutations do not change the amino acid sequence of a protein, they are generally considered to be selectively neutral. Empiric data suggest, however, that a significant fraction of viral mutational fitness effects may be attributable to synonymous mutation. Bias in synonymous codon usage in viruses may result from selection for translational efficiency, mutational bias, base ...
متن کامل